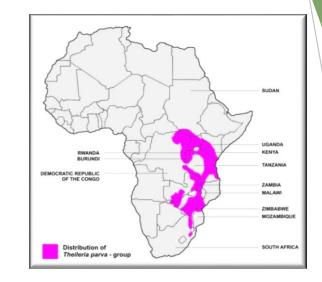


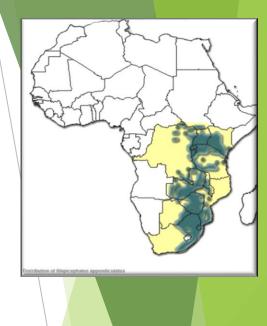
L'élevage dans les régions aride et semi-aride face aux défis du changement climatique Mardi 12 Mars 2019

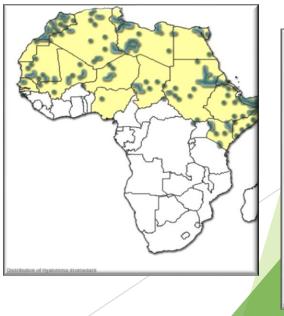
Control of ticks (and tick-borne diseases) with acaricides in the traditional livestock system in Southern province of Zambia: implication on public & environmental health

Daniele De Meneghi, DVM, PhD, dipl. ECVPH CISAO_UniTo and Dept. Veterinary Science, Università degli Studi di Torino Campus AgroVet, Grugliasco-Turin (Italy)

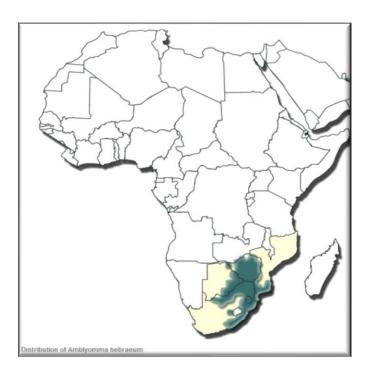
"<u>Ticks and Tick-borne Diseases (TBDs</u>), particularly theileriosis, and tsetse transmitted trypanosomosis had and still have more impact on development of livestock industry, veterinary & public health infrastructures, legislation and policies, and on research in developing countries (especially Africa) than any other livestock disease" (McKosker, 1991; cit. in Norval et al., 1992; Minjauw & McLeod, 2003)

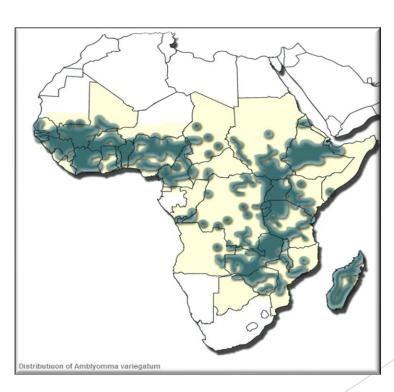

- TBDs affect about 80% of the world cattle population, especially in the (sub-)tropics (Minjauw & McLeod, 2003)
- TBDs are considered (one of) the most important problem in animal health in Africa (Norval et al, 1992; Minjauw & McLeod, 2003)
- The estimated annual global costs associated with ticks & TBDs in cattle amount to US\$ 13.9 - 18.7 billions (de Castro, 1997)
- Average financial losses (production losses plus control costs) per animal/per year are estimated at USD \$7.3 (FAO, 2004)

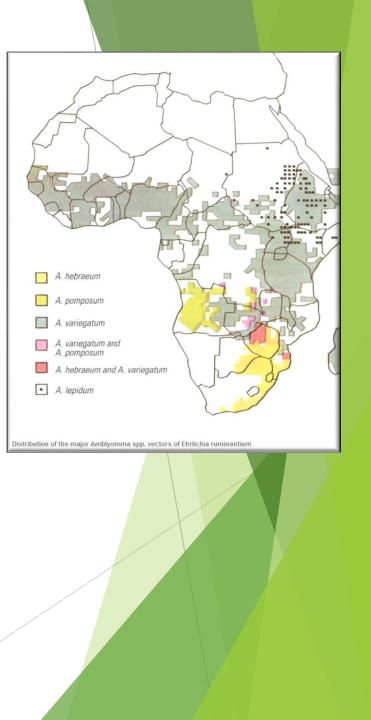

Major TBDs in Africa


Theileriosis-East Coast Fever

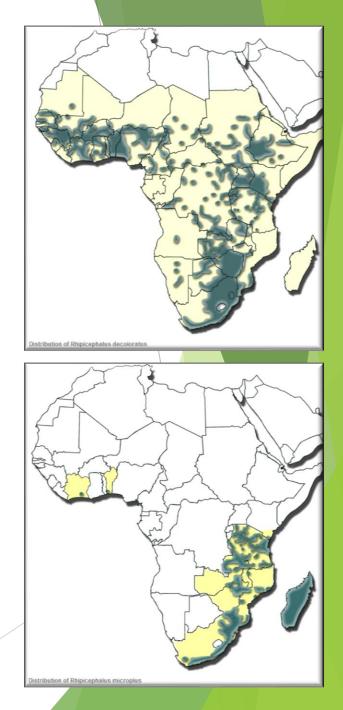
(Theileria parva complex) --> Rhipicephalus appendiculatus, R.zambesiensis


- Mediterranean/Tropical Theileriosis (Theileria annulata) --> Hyalomma spp. (H. dromedari, H.truncatum)
- \rightarrow Hyalomma ticks: important role in CCHF transmission





•Cowdriosi-Heartwater [Ehrlichia (Cowdria) ruminantium] --> Amblyomma variegatum, also other theileriosis (mainly benign): A.variegatum ticks -> predisposing factor/mechanical vectors of dermatophilosis/ streptotricosis



•Anaplasmosi-Gallsickness (Anaplasma marginale,

A. centrale) --> Rhipicephalus (Boophilus) annulatus, R. microplus, R. decoloratus

 Babesiosi-Redwater (Babesia bovis, B.bigemina) --> Rhipicephalus (Boophilus) spp.; in Europe (Northern/temperate) → B. divergens; in Eurasia-Magreb
 → B.major

Ticks and TBDs and Climate Change (CC)

Climate change (CC) and rise of temperature have the **potential to expand** the **geographical range** of about **50% of tick species** (especially in Northern countries)

CC will cause local shifts in geographical ranges of most vectors and VBDs \rightarrow 2 distinct processes: in hot/dry areas >> rainfall & humidity would promote >> survival rates of vectors; in cool/wet areas >> temperatures would allow overwintering of vectors.

CC would affect transmission patterns of infectious diseases in multiple ways, including lowering the effectiveness of existing intervention strategies.

Development rate of most arthropods increases with temperature, leading to a change in population dynamics \rightarrow the present vector control measures (i.e. by acaricides) might need to be reviewed.

Relationships between CC &TBDs is not uniform across regions & tick species; ticks response to CC & hosts density can be extremely variable; complex ecological processes make TBDs difficult (<u>if not impossible</u>) to be predicted on a long term; many interdependent variables and complex tickhost-pathogen dynamics may trigger the so called ... "butterfly effect"

...TICKS & TBDs ARE A SERIOUS PROBLEM FOR LIVESTOCK PRODUCTION, ANIMAL HEALTH & PUBLIC HEALTH ... HOW TO CONTROL?

Main Control Methods of Ticks & TBDs

chemical control (for ticks)

- **Dipping** (in DTs) → intensive, strategic, threshold regimes)
- Spray race
- Hand spray
- Foot-bath (pediluve acaricide)
- Pour-on, spot-on
- Hand-dressing
- Ear-tags, tail decoys, self-applicators
- Ruminal boluses, etc.

Main Control Methods of Ticks & TBD (cont.)

chemical control - types/classes of acaricides

- Organophosforous-OPs (chlorphenvinfos, coumaphos, diazinon, dioxathion)
- Carbamates (carbaryl)
- Pyretroids (permethrin, decamethrin, deltamethrin, cyhalothrin, cyfluthrin, flumethrin, etc.)
- Amidines (amitraz)
- Macrocyclic Lactones (ivermectin, moxidectin, doramectin)
- Benzoyl-phenylurea insecticides (Fluazuron[®] → chitin synthesis inibitors)

Main Control Methods of Tick & TBD (cont.)

biological & ecologic control (for ticks)

- Pasture spelling (pasture management, rotation, fencing, ect.);
- Natural acaricides, anti-ticks plants;
- Predation on ticks and parasites/pathogens for ticks;
- Anti-ticks vaccines (\rightarrow TICK-GRAD, GAVAC);
- Host resistance/tolerance to ticks;
- Pheromones, sterile male/hybrid mating technique

Main Control Methods of Ticks & TBD (cont.)

control methods for TBDs

- •Vaccination → live vaccines (ITM), attenuated, inactivated, recombinant)
- Pharmacologic Treatment (therapy & chemoprophylaxis)

What is the best method? Is there an ideal approach for ticks & TBD control?

«Integrated Ticks & TBDs Control Package»

a sustainable, strategic and integrated approach

A case study: Control of ticks and tick-borne diseases with acaricides in the traditional livestock system in Southern province of Zambia - implication on public & environmental health

- <u>Name of the Cooperation programme</u>: Animal Health Programme in the Republic of Zambia
- <u>Sub-programme component / project name</u>: Control of Malignant Theileriosis in the traditional cattle sector of Southern Province of Zambia
- *Financing body*: Development Cooperation, Ministry of Foreign Affairs, Rome Italy
- Implementing agency: WHO/FAO/CC/ISS, Rome (Italy), jointly with Dept. Veterinary & Tse-tse Control Services, Ministry of Agriculture, Lusaka (Zambia)
- Starting date/project duration: 1987; 3 yrs + 1 yr extension

Animal Health Programme in the Republic of Zambia

Project area: Southern Province of Zambia (25°10'-28°50' E; 15°14'-18°00' S); 83,000 sqkm; 8 admin. districts; <u>population</u>: 800,000 habitants (1994); 2 distinct ecological zones: valley and plateau; <u>vegetation cover</u>: miombo and mopane woodland and pasture/grassland; <u>elevation</u>: 700-1400 m asl.; <u>climate</u>: 3 seasons (hot-dry; warm-wet; cool-dry); <u>rainfall</u>: from 500-600 to 800-900 mm/year

Animal Health Programme in the Republic of Zambia

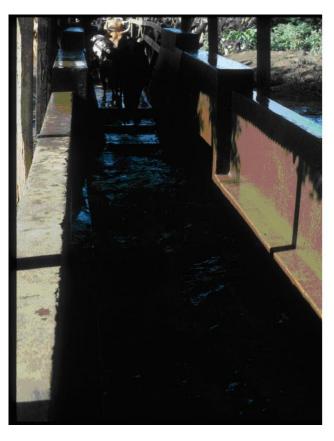
Southern Province 600,000 cattle (1/3 national herd) Sanga type; Tonga breed herd size: 30 - 1,000 head traditional livestock keeping system

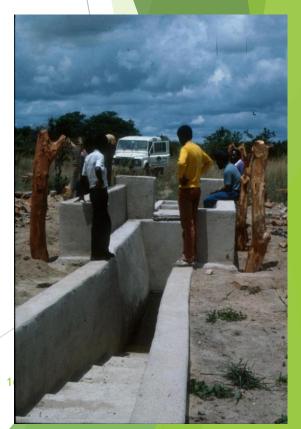
grazing on communal land ¹⁴ transhumance to Kafue flats / flooded plains (during dry season)

Animal Health Programme in the Republic of Zambia

Main project objective: control of ticks vectors of "malignant" theileriosis (MT) and other ticks (Amblyomma variegatum) & TBDs;

agent: Theileria parva complex; vector: Rhipicephalus appendiculatus, 3-host tick (brown ear tick) + R. zambesiensis In 1985-87 \rightarrow MT single most important cause of cattle mortality in Zambia




Methods/Activities: strategic dipping with acaricide \rightarrow weekly interval in rainy season (max. activity of adult ticks vectors), no dipping in dry period (to favour building-up of enzotic stability);

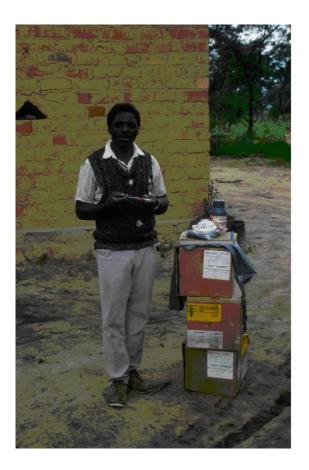
network of 142 dip-tanks (DTs) throughout Southern Province

• dipping implemented under partial recovery system (sustainability?!)

• Acaricide used : organophosphorus \rightarrow chlorfenvinfhos (dipwash: 500mg/L)

Dipping → cost-effective method, but public health (direct and indirect) risks for :

- DTs workers & livestock keepers (**risk1**)
- farmers, villagers and consumers (risk2)
- environment (risk3)


Research to evaluate public health risks related to the use of acaricides/pesticides

- risk1: acute poisoning by contact/ingestion
- **risk2**: consumption of contaminated milk / no compliance with withdrawal period (max residues limits: 0,008 mg/kg ; 24 hrs)
- **risk3**: DTs leakages, emptying DTs on fallow land, improper storage and disposal of acaricide tins

Persons/categories at risk: DTs workers & livestock keepers (risk1)
 → actions taken:

provision of protective equipment: gloves, plastic apron, face masks; antidote: atropine sulphate (village dispensaries, rural clinics, hospitals)
training: courses/DT manuals (*A manual on DT management for field staff*) and information leaflets (English and Tonga languages)

De Meneghi et al. (Eds) (1990). VPH Reports ISS/WHO/CC90.10 Ghirotti et al. (1990) VPH Reports ISS/WHO/CC90.12

Persons/categories at risk: farmers, villagers and consumers (risk2)

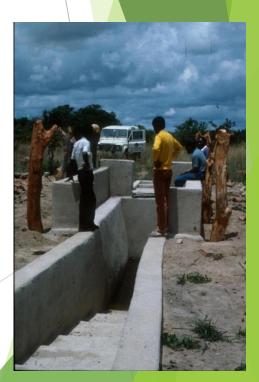
 \rightarrow actions taken:

research on acaricide residues in milk under field condition

10 cows; milk samples taken at 3, 9, 24, 48 hrs after dipping (results: after 24 hrs, ≤ 0,005 mg/kg)
8 samples of bulk milk from local market (results: < 0,005 mg/kg)
Camoni et al. (1990). Vet Res.Comm., 14: 503-506

Material for health education/promotion :
radio program using rural broadcasting radio network (in Tonga language and English)
information leaflets (Tonga language)
Scorziello et al. (1993). Health Prom. Int. 8(2): 103-110

• Other risks: environment (risk3); farmers, villagers \rightarrow actions


taken:

health education programs by rural radio (Tonga language and English); information leaflets (Tonga language); meetings (tins, DTs decantation pits, etc.)

Scorziello et al. (1993). Health Prom. Int. 8(2): 103-110 De Meneghi et al. (eds) (1990). VPH Reports ISS/WHO/CC90.10

Additional activities: sero-epidemiological survey on selected cattle diseases/zoonoses (incl. zoonoses transmissible via raw milk consumption)

• 1,911 cattle sampled and tested (from 116 villages)

Brucellosis	plateau 16.2%	valley 6.6%	Kafue flats
	(n:1031)	(n:666)	28.5% (n:214)
Q-Fever	plateau 0.1%	valley 0.2%	Kafue flats 0.9%
	(n:1031)	(n:666)	(n:214)
RVF	n.d.	n.d.	Kafue flats 14% (n:214)

Ghirotti et al. (1991) Vet Res. Comm. 1: 25-36; De Meneghi (1994). PhD Thesis, Univ. of Turin; De Meneghi et al. (1995) Proc. 8° Conf. Inst.Vet. Med. Vol.II: 284-288.

21

Whether the project involves livestock and/or wildlife, and/or environment and/or man, one of the most important communication tool is the «classical meeting under the tree» communicating / informing / training / sharing with stakeholders are fundamental keys for the success of a project !!

Animal Health Programme in the Republic of Zambia

